“Read Backwards” Month

There are quite a few beautifully symmetric dates that present themselves this month, including 11/1/11, 11/02/2011, 11/05/2011 (use a mirror!), 11/11/11, and 11/22/11. In honor of this phenomenon, I want to say a few words about palindromes, which are simply things that read the same backwards as forwards. A few famous examples include “racecar,” “Never odd or even,” “I prefer pi”, “Dr. Awkward”, “Aibohphobia” (which means fear of palindromes [I didn’t make this up!]), “Go hang a salami; I’m a lasagna hog!”, or if you read by word instead of by letter, “Blessed are they that believe that they are blessed.”

If we consider digits instead of letters or words, then numbers such as 676, 100020001, and 12345678987654321 are palindromes. These are in fact quite special palindromes, as they are all squares of integers: \(26^2 = 676\), \(111111111^2 = 12345678987654321\), and \(10001^2 = 100020001\). Are there infinitely many palindromic squares? Yes: the last example above hints that \(10\ldots01^2 = 10\ldots020\ldots01\) for however many 0s you put in the middle. By contrast, if we ask for \(n^5\) to be palindromic (or any higher power), then no solutions are currently known!

You might ask for other types of palindromic numbers, such as palindromic primes. A few examples include 7 (this is a palindrome!), 101, 19391, and 1000000008000000001. Are there infinitely many? We don’t know. But the largest palindromic prime currently known is \(10^{200000} + 47960506974 \cdot 10^{99995} + 1\), according to Wikipedia.

For one more game, here’s a way to make palindromes out of non-palindromes. Start with a non-palindrome, like 86, and keep adding it to its reversal until you get a palindrome: e.g., 86+68 = 154, 154+451 = 605, and 605+506 = 1111, which is a palindrome. How quickly will this terminate? Well, try starting with 89 and see how long it takes! (Answer: it finally stops at a 13-digit palindrome.) But surely it always terminates eventually, right? Surprisingly, the answer to this question is currently unknown. In fact, it is unknown if the sequence starting at 196 ever finds a palindrome!

Finally, if you still want more to think about, try repeating this entire discussion in another base, e.g. base 2. Good luck!

2 thoughts on ““Read Backwards” Month

Leave a Reply

Your email address will not be published. Required fields are marked *