Archimedes’ Circular Reasoning

Every geometry textbook has formulas for the circumference (\(C = 2 \pi r\)) and area (\(A = \pi r^2\)) of a circle. But where do these come from? How can we prove them?

Well, the first is more a definition than a theorem: the number \(\pi\) is usually defined as the ratio of a circle’s circumference to its diameter: \(\pi = C/(2r)\). Armed with this, we can compute the area of a circle. Archimedes’ idea (in 260 BCE) was to approximate this area by looking at regular \(n\)-sided polygons drawn inside and outside the circle, as in the diagram below. Increasing \(n\) gives better and better approximations to the area.

Approximating circle area with triangles
The n-sided regular polygons inside (blue) and outside (red) a circle can be used to approximate the area of the circle. Shown here for n=12.

Look first at the inner polygon. Its perimeter is slightly less than the circle’s circumference, \(C = 2 \pi r\), and the height of each triangle is slightly less than \(r\). So when reassembled as shown, the triangles form a rectangle whose area is just under \(C/2\cdot r = \pi r^2\). Likewise, the outer polygon has area just larger than \(\pi r^2\). As \(n\) gets larger, these two bounds get closer and closer to \(\pi r^2\), which is therefore the circle’s area.

Archimedes used this same idea to approximate the number \(\pi\). Not only was he working by hand, but the notion of “square root” was not yet understood well enough to compute with. Nevertheless, he was amazingly able to use 96-sided polygons to approximate the circle! His computation included impressive dexterity with fractions: for example, instead of being able to use \(\sqrt{3}\) directly, he had to use the (very close!) approximation \(\sqrt{3} > 265/153\). In the end, he obtained the bounds \( 3\frac{10}{71} < \pi < 3\frac{1}{7} \), which are accurate to within 0.0013, or about .04%. (In fact, he proved the slightly stronger but uglier bounds \(3\frac{1137}{8069} < \pi < 3\frac{1335}{9347}\). See this translation and exposition for more information on Archimedes’ methods.)

These ideas can be pushed further. Focus on a circle with radius 1. The area of the regular \(n\)-sided polygon inscribed in this circle can be used as an approximation for the circle’s area, namely \(\pi\). This polygon has area \(A_n = n/2 \cdot \sin(360/n)\) (prove this!). What happens when we double the number of sides? The approximation changes by a factor of $$\frac{A_{2n}}{A_n} = \frac{2\sin(180/n)}{\sin(360/n)} = \frac{1}{\cos(180/n)}.$$ Starting from \(A_4 = 2\), we can use the above formula to compute \(A_8,A_{16},A_{32},\ldots\), and in the limit we find that $$\pi = \frac{2}{\cos(180/4)\cdot\cos(180/8)\cdot\cos(180/16)\cdots}.$$ Finally, recalling that \(\cos(180/4) = \cos(45) = \sqrt{\frac{1}{2}}\) and \(\cos(\theta/2) = \sqrt{\frac{1}{2}(1+\cos\theta)}\) (whenever \(\cos(\theta/2) \ge 0\)), we can rearrange this into the fun infinite product $$\frac{2}{\pi} = \sqrt{\frac{1}{2}} \cdot \sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}}} \cdot \sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}+\frac{1}{2}\sqrt{\frac{1}{2}}}} \cdots$$ (which I found at Mathworld). (It’s ironic that this formula for a circle uses so many square roots!)

6 thoughts on “Archimedes’ Circular Reasoning

  1. I simply want to mention I’m very new to blogs and seriously enjoyed this website. Likely I’m want to bookmark your blog . You amazingly come with superb articles and reviews. Appreciate it for sharing with us your web page.

  2. It seems to me that 360 and 180 are reversed in middle part of the third-to-last equation. A_n =(n/2)*sin(360/n), so the larger central angle (360/n) should go with the polygon with smaller number of sides (A_n). If we have 2sin(180/n)/sin(360/n) instead, then sin(360/n)=2sin(180/n)cos(180/n) can cancel with the numerator and give the desired result.

Leave a Reply to Brian Cancel reply

Your email address will not be published. Required fields are marked *